

Path planning of a mobile robot using genetic heuristics
Andreas C. Nearchou
Mechanical Engineering Department, University of Patras, 26 110 Patras, Greece
Tel.: ++3 -61 997.590. Fax: ++3 -61 997.700. Email: nearchou@upatras.gr

(Received in Final Form: December 11, 1997)

SUMMARY
A genetic algorithm for the path planning problem of a
mobile robot which is moving and picking up loads on its
way is presented. Assuming a findpath problem in a graph,
the proposed algorithm determines a near-optimal path
solution using a bit-string encoding of selected graph
vertices. Several simulation results of specific task-oriented
variants of the basic path planning problem using the
proposed genetic algorithm are provided. The results
obtained are compared with ones yielded by hill-climbing
and simulated annealing techniques, showing a higher or at
least equally well performance for the genetic algorithm.

KEYWORDS: Path planning; Mobile robot; Genetic heuristics;
Load picking.

1. INTRODUCTION
Path planning is widely recognized as a fundamental
problem and one of the most complex in the domain of
Robotics.1 Given a description of the robot’s environment, a
start position and a desired destination, the problem is to
find a continuous, collision-free motion for the robot from
the start to the goal position. Even in its simplest form, the
problem is characterized as NP-complete and PSPACE-
hard. Its complexity increases exponentially with the
dimension of the robot’s configuration space.2

A fundamental tool for formulating and solving path
planning problem is the configuration space.3 The central
idea behind this approach is the representation of the
position and orientation of the robot as a single point in its
configuration space (C-space) by building geometric
objects, called configuration space obstacles (C-obstacles).

Many approaches have been proposed by the research
community to solve the path planning problem using C-
space. The most extensively studied so far is to reduce the
problem to a shortest-path problem in a graph: (i) the
visibility graph approach4,5 is based on the construction of
an undirected graph whose vertices are the initial and the
goal configuration of the robot and the vertices of the C-
obstacles. The problem of path planning is thereby
converted into a search of the graph for a path (usually the
shortest) between the initial and the final configuration. (ii)
Retraction method6,7 uses a Voronoi diagram to solve the
path planning problem. The edges of the Voronoi diagram
represent paths that are equidistant from the closest pair of
obstacles, and its vertices are points where three or more

such paths meet. A solution to the problem is found by
searching this graph for shortest path. (iii) The decomposi-
tion of the robot’s free-space into simple regions, called
cells, and the construction of a non-directed graph, called
connectivity graph, is one of the oldest path planning
approaches.8 This graph represents the adjacency relation
between the cells. Its vertices are the generated cells and
two cells are connected with a link if they are adjacent.

After the construction of the suitable graph, the path
planning process is completed by searching this graph for a
sequence of vertices which connect the start and goal
position. Usually, the Dijkstra’s graph search algorithm,9 or
the A* algorithm10 are used. Since the computational time of
the searching process increases exponentially with the
number of the vertices in the graph, the implementation of
these algorithms for problems with large number of vertices
in a conventional serial computer may be not effective.
Furthermore, in real-world applications, robot path planning
must additionally satisfy special, task-oriented criteria, such
as minimizing the time of travel, maximizing load carrying
operations, etc.

Recent advances in robotics and machine intelligence
have led to the application of modern heuristics, such as the
genetic algorithms (GAs), to solve the path planning
problem. Davidor11 proposed a special GA for optimized
robot trajectories. The main characteristics of his algorithm
is the use of dynamic chromosomes’ structures and a
modified crossover operator called analogous crossover.
Each chromosome in the population represents a different
robot trajectory, i.e. a sequence of successive arm-con-
figurations. The goal of the proposed GA is to minimize the
accumulative deviation between the actual and the desired
path. Hoi-Shan Lin et al.12 presented an evolutionary
algorithm for the path planning problem of mobile robots in
environments which may contain unknown obstacles. Their
algorithm first determines an optimal global path from the
start to the destination, and then performs a process of
repairing this path, by handling possible collisions with
known or unknown obstacles. In a recent work,13 the author
of the current paper used a simple GA to solve the path
planning problem of redundant articulated robots. The
objective of the proposed GA was the minimization of the
end-effector’s positional error from the desired destination,
while keeping the links of the robot in a safe distance from
the obstacles. Assuming a predefined map with knot points,
Shibata and Fukuda14 proposed a GA with fuzzy critic to
determine an optimal path for a mobile robot which is
moving and picking up loads on its way.

Robotica (1998) volume 16, pp. 575–588. Printed in the United Kingdom © 1998 Cambridge University Press

This paper presents a different genetic-based approach
for solving the path planning problem of a robot which
during its motion may be ordered to pick and carry loads to
the destination. Assuming a known map of the robot’s
environment consisting of knot points, which are given in a
graph-vertices format, the proposed GA searches this map
for an optimal path between the start and the destination
points satisfying the additional task requirements.

The main characteristics of the proposed GA consist of
the following: (1) bit-string encoding of selected graph-
vertices is used. (2) The elimination of the non-feasible
solutions is performed without using penalty terms in the
evaluation function. (3) Sigma-truncation scaling of the
fitness function is used. (4) The individual’s chromosomes
are selected for reproduction according to the Tournament
strategy. (5) New populations of chromosomes are gen-
erated using three genetic operators: a uniform crossover, a
bit-mutation and a bit-inversion.

The performance of the proposed GA is tested on a large
number of experiments, and compared to that of three other
heuristics: an iterated hill-climbing, an iterated stochastic
hill-climbing, and the simulated annealing.

The remainder of the paper is organized as follows:
Section 2 defines and formulates the problem. Section 3
presents and analyzes the proposed GA solution. Section 4
demonstrates and discusses the efficiency of the proposed
solution through simulation experiments. In the same
section a comparison between the GA’s performance and
that of the three heuristic techniques is provided. Finally, the
contribution of the paper is summarized in section 5.

2. FORMULATION OF THE PATH PLANNING
PROBLEM
The problem’s terminology used in this paper is as in
reference 8. Let a robot, called A, be a single point moving
in its two dimensional C-space among polygonal C-
obstacles. Also assume that in the preprocessing phase, the
map, called G, representing the possible free paths for A,
has been constructed and given as a network of one-
dimensional curves. Path planning consists of connecting
the start and goal configurations to points in G, and
searching G for the shortest path between these points.

Several types of G exist in the literature, such as the
visibility graph, the connectivity graph, the Voronoi dia-
gram, etc. Without loss of generality, this work assumes that
G=(V, E) is a visibility graph,4 i.e. a non-directed graph
whose vertices V are the start and goal robot’s configura-
tions, and all the C-obstacle vertices. The links E of G are
straight line segments connecting pair of vertices that do not
cut the interior of a C-obstacle region.

Further, it is assumed that A not only moves from start to
goal, but also performs a pick-and-carry-loads operation in
its way. The loads given as pure positive quantities are
located on the knot points, i.e. on the vertices of G.

This paper deals with the following types of robot’s
tasks:
(a) Move as fast as possible without carrying any loads on

the way.
(b) Move by picking-and-carrying on the way as many

loads as possible without considering the time of

travel.
(c) Move fast picking-and-carrying on the way as many

loads as possible.
(d) Move fast picking-and-carrying on the way as many

loads as possible. Do not carry more loads than a
permitted upper limit.

According to the above assumptions, the problem can be
formally stated as follows:

The path planning problem in a graph (PPPG): Given
a connected, unidirected graph G=(V, E), the start and goal
vertices Vs, Vg, respectively, in G(Vs, VgPV). A positive
edge-cost function c: EPR+ . A positive vertex-profit func-
tion l: VPR+ . Compute a sub-graph G9=(V9, E9) of G,
where V9#V, E9#E, and Vs, VgPV9, such that:

d Task-1: c(G9) is minimal,
d Task-2: l(G9) is maximal,
d Task-3: c(G9) is minimal and l(G9) is maximal,
d Task-4: c(G9) is minimal and l(G9) is maximal but less

than an upper permitted limit (Lmax) for the
loads.

The cost cj of an edge Ej in G9 corresponds to the
Euclidean distance between the vertices (Vj2 l, Vj) joined by
Ej. Therefore, the total path cost is equal to

PathCost =O
j

c(Ej). (1)

The profit lj corresponds to the load founded in Vj, and
thus, the total load carried is equal to

LoadCarried =O
j

l(Vj). (2)

3. THE PROPOSED GENETIC ALGORITHM
SOLUTION
The purpose of this paper is not to outperform or to find
better solutions than other existing heuristic approaches to
the PPPG. Its purpose is to show how genetic algorithms
may be effectively applied to this problem and to describe
how to do so. This section starts with a brief overview of
GAs, and then presents and analyzes the proposed GA
solution to the PPPG. Finally, it briefly describes three other
heuristic techniques tested in this work.

3.1 Genetic algorithms: a brief overview
Genetic algorithms (GAs) are formed of a directed random
search, which emulates the process of genetic evolution
found in nature to perform artificial evolution. They were
developed by John Holland15 in the early 1970s and since
then have been successfully applied to numerous large and
complex search space problems.16,17

In nature, organisms have certain characteristics that
affect their ability to survive and reproduce. These charac-
teristics are contained in their genes. Natural selection
ensures that genes from a strong idividual are presented in

Genetic heuristics576

greater numbers in the next generation than those from a
weak individual. Over a number of generations, the fittest
individuals (in the environment in which they live) have the
highest probability of survival and tend to increase in
numbers, while the less fit individuals tend to die out. This
is the Darwin’s principle of survival-of-the-fittest and
constitutes the basic idea behind GAs.

Holland15 showed that potential solutions to a search
problem can be encoded using simple representations (bit
strings), mirroring the role played by the genes. A number
of such strings or individuals form the population for the
GA. The quality of an individual is defined through a
measure called fitness. As the GA evolves, a set of basic
genetic operators are iteratively applied on the entire
population to produce new populations with better individ-
uals. After a number of generations, this process should lead
to a population of highly fit individuals, i.e to structures
which represent good solutions to the physical search
problem to be solved. The fittest individual of the “final”
generation should be an optimal, or a near optimal solution
to the physical problem.

Traditionally, a GA starts evolving by generating (usually
in a random way) an initial population of chromosomes.
Then, the value of a function called fitness function is
evaluated for each chromosome of the population. After
this, a set of genetic operators (selection, crossover and
mutation) are used in succession to create a new population
of chromosomes for the next generation. The process of
evaluation and creation of new successive generations is
repeated until the satisfaction of a convenient termination
condition. The basic structure of any GA is given below in
a Pascal-like format:

procedure GA
begin

gen←0;
initialize Pop(gen);
evaluate Pop(gen);
while not termination-condition do

gen←gen+1;
select Pop(gen) from Pop(gen21);
crossover Pop(gen);
mutate Pop(gen);
evaluate Pop(gen);

endwhile
end

The major components of any GA which can significantly
affect its performance are the following:17

3.1.1 The representation mechanism: a means of encod-
ing solutions to the physical search problem as artificial
chromosomes. This mechanism consists of choosing a way
to represent a solution to the real problem as a finite-length
string over a specific alphabet. This string is called a
chromosome. Binary coding, i.e. strings of bits (0, 1), is the
most commonly used representation in today’s GAs.
However, other codings have proved to be more effective for
specific problems and under certain circumstances.

3.1.2 The initial population: a way of creating an initial

population of such chromosomes. Choosing the initial
population of chromosomes in a GA is usually done
randomly, with the goal of selecting solutions from all over
the search space. The speed with which a GA moves from
a random to a well-adapted population is a good measure of
performance. Another way of choosing the initial popula-
tion, is the direct initialization, when some aspects of a good
solution are known in advance. Although this method may
drastically reduce the computation time required by the GA,
it can lead to problems of premature convergence, a case
where the GA falls into a local optimum.

3.1.3 The evaluation mechanism: a means of evaluating
the “fitness” of each chromosome. This mechanism consists
of evaluating a function called fitness function, the value of
which denotes how good solution to the real problem a
specific chromosome represents. This evaluation is very
significant since the fitness’ value defines the ability of the
corresponding chromosome to survive and reproduce in the
next generation. Furthermore, the fitness function plays the
role of the environment in which during the evolution of the
GA the chromosomes must be adapted. In an optimization
problem, the fitness function corresponds to the objective
function which must be optimized.

3.1.4 The operators: a set of genetic operators applied on
the population. There are three basic forms of genetic
operators in most GAs: selection, crossover and mutation.
Each one of these operators emulates a corresponding
process found in biological evolution. Selection is the
operator which emulates the process of natural selection or
the “survival-of-the-fittest”. Individual’s chromosomes are
copied from one generation to the next according to their
relative fitness value in respect to the total population’s
fitness. Therefore, chromosomes with higher fitness value
have greater chance of contributing one or more offspring to
the subsequent generations. The traditional method imple-
menting selection is the proportionate selection or roulette
wheel.16 Crossover follows selection and is a recombination
operator that works on a pair of old chromosomes randomly
selected according to a specified probability (typical in the
range between 0.6 and 1.0). The traditional view, is that
crossover is the most important part of a GA for rapidly
exploring a search space. Due to this fact, several forms of
crossover have been proposed in the literature, e.g. single-
point, two-point, cyclic, uniform crossover, etc. Mutation is
applied to each child individual chromosome after cross-
over. It randomly alters the value of each gene of a
chromosome with a small probability (typical equal to
0.001). For chromosomes encoded as binary strings,
mutation results to a change of the digital value “1” to a “0”
value and vice versa.

3.1.5 Control parameters: appropriate settings on a set of
control parameters. A number of parameters which control
how the various elements (described above) of a GA
combine and operate must also be defined. This is very
important because each different combination of the same
elements has its own characteristics in the GA performance.
According to Grefenstette’s experimental work,18 the most
important control parameters are: population size, crossover

Genetic heuristics 577

and mutation rates, generation gap, selection strategy,
fitness scaling.

3.2 The selected chromosome and its interpretation
The key point in designing a GA to find solutions to a given
problem is the suitable syntax of the chromosomes in the
population together with their interpretation. For the PPPG,
the chromosome selected for use is a string of bits of a fixed
length representing a set of selected graph vertices. Each bit
in the string corresponds to a specific vertex in the graph.
The left most bit in the string corresponds to the start vertex,
while the right most bit corresponds to the destination
vertex in the graph. If a specific bit is set, the associated
graph vertex is selected. The set of the selected vertices
specifies a path for the robot between the start and the
destination vertices under the assumption that each vertex
can be passed only once or not at all in the path. We are
interested only for feasible baths, i.e. for paths that do not
cross or cut any C-obstacles region.

Specifically, for a graph with N vertices the start vertex
has the label 1 and the destination vertex the number N. The
other vertices are numbered in the range [2 . . . N21].

Initially, the chromosomes are generated as follows:
(i) Randomly choose an integer k in the range

[2 . . . N21].
(ii) Randomly select k integers in the range [2 . . . N21].

These integers correspond to string positions, i.e. to
vertices’ labels. Duplications are not allowed.

(iii) For each one of the k positions generate a bit value by
flipping a fair coin.

(iv) If a specific bit is set then the corresponding vertex is
selected for use in the path.

For example, the 7-bit string 1 0 0 1 1 0 1 represents a
unique path in a 7-vertices graph passing through the
vertices 1-4-5-7, where 1 denotes the start vertex and 7 the
destination vertex in the graph. It must also be underlined
that a chromosome’s structure may lead to a not feasible
path i.e. to a path that cuts the interior of a C-obstacle
region.

3.3 Fitness evaluation
By far the selection of the convenient fitness function’s form
is the next important aspect in designing a GA for a specific
problem. Based on the problem’s formulation described in
section 2, each one of the desired robot’s tasks correspond
to a different constrained optimization problem. The fitness
function (also known as the scoring function of a chromo-
some’s solution), corresponds to the objective function of
the constrained optimization problem we want to optimize.

GAs are essentially unconstrained search procedures
within the given representation space. The traditional GA
formulation for constrained optimization problems is
through the use of penalty functions.16 However, as Davis
observed in reference 17, though the evaluation function
may be well defined, there is no accepted methodology for
combining it with the penalty. To overcome this problem, a
different function formulation is used in this work.

For the PPPG, each chromosome represents a unique path
in the graph. Taking into account equation (1), the total path

cost of a chromosome’s structure is evaluated using the
following relation:

PathCost =
O

j

c(Ej), If feasible path

A real maximum, Otherwise

(3)

For the pick-and-carry loads operation the following
relation is used:

LoadCarried =
O

j

l(Vj),

0,

If (feasible path)`SO
j

l(Vj)<Lmax D
Otherwise

(4)

Therefore, for the robot’s task-1, the fitness function is
defined as:

fitness=
1

PathCost

(5)

For robot’s task-2, fitness function is defined as:

fitness=LoadCarried (6)

For robot’s task-3 and task-4, fitness is computed by:

fitness=
LoadCarried

PathCost

(7)

For each one of the desired robot’s tasks, the objective of the
proposed GA is to maximize the associated fitness function.
This results to a minimum value for the path cost (robot’s tasks:
1, 3, and 4), and to a maximum value for the total load carried
by the robot (robot’s tasks: 2, 3, and 4). The above formulations
of the fitness function progressively eliminate the appearance
of non-feasible solutions in the population by reinforcing the
survival and reproduction of the feasible solutions. A solution
is feasible if it corresponds to a valid path, and if the total
weight of the loads on the vertices of this path do not exceed
the upper permitted limit Lmax (case of task-4).

3.4 Genetic operators and control parameters
Four genetic operators were used in the proposed GA:
selection, crossover, mutation, and inversion.

Selection: The individual chromosomes are selected

Genetic heuristics578

based on the binary Tournament selection strategy.19

According to this strategy, two chromosomes are picked at
random from the population and that with the higher fitness
value is copied into a mating pool (i.e. it survives and
reproduces its structure into the new population). This
process is repeated until the mating pool is full.

Crossover: A uniform crossover operator20 was used.
This operator works as follows: two parent chromosomes
are selected based on the crossover probability. For the pair
of the selected parents a template or mask chromosome is
randomly generated. The bit-value at each position of the
template specifies the bit-value of the corresponding
position of the child chromosome. Specifically, where there
is “1” in the template, the corresponding gene from the first
parent passes its value to the child, otherwise the second
parent passes its bit-value to the child. The process is
repeated with the parents exchanged to produce the second
child. Therefore, offspring contain a mixture of genes from
each parent.

Mutation: This operator is the traditional bit-mutation
operator described in sub-section 3.1. It randomly alters
each gene with a small probability.

Inversion: Inversion is a reordering operator applied on
the bits of a single chromosome. It works by reversing the
order of genes between two randomly chosen positions
within the selected chromosome. Exhaustive experiments
for the PPPG show that the use of this operator significantly
increases the performance of the proposed GA.

The last critical aspect in designing a GA is the selection
of the suitable settings for the GA’s control parameters.
Unfortunately, there is no formal way to define the
appropriate parameters’ settings. Traditionally, this is
achieved experimentally. The final settings used to test the
proposed GA for the PPPG are (experimentally determined)
as follows: population size=100, total number of genera-
tion=50, crossover rate=0.6, mutation rate=0.0333,
inversion rate=0.1, sigma scaling factor c=1.0, generation
gap=1.0. A description of each one of the control
parameters is given below:

Population size: Determines how many chromosomes,
i.e. how much genetic material, are available during the
genetic search. A too small population size decreases the
ability of the GA to adequately cover the search space. A too
large population size significantly increases the time needed
by the GA to evaluate the chromosomes and thus results in
an ineffective search.

Crossover rate: Specifies the frequency with which the
crossover operator is applied to the individual’s chromo-
somes in a new generation. A too low crossover rate causes
the introduction of fewer new individual’s into the popula-
tion and may lead to search stagnation since the process of
reproduction tends to dominate. A too high rate leads to a
very fast exploration of the search space but the GA’s
performance may be degraded as strong individuals are
discarded very fast before reproducing their structure.

Mutation rate: Specifies the probability that a gene’s
value of a newly created chromosome will be changed.
Mutation governs the introduction of new unexplored areas
in the search. A high mutation rate increases the diversity in
the population but introduces excessive randomness in the

search. Conversely, a too low mutation rate reduces the
diversity and leads to sub-optimal solution.

Generation gap: This parameter specifies the proportion
of the individuals in the population which are replaced by
the offspring in each generation. Usually, a generation gap
of one is use, i.e. the whole population is replaced in each
generation.

Scaling: This is a method to avoid the problem of
premature convergence in a GA. Scaling is used to maintain
good levels of competition throughout the search process. In
the absence of scaling, few, relatively “good” chromosomes
but not optimal (called super-individuals) could dominate
the population very early in the process, leading the GA to
premature convergence. In this paper a sigma-truncation
technique16 was used:

fitnessscaled =fitnessraw 2 (fitnessaverage 2c.s) (8)

where c a small integer chosen in the range [1 . . . 5] and s
is the population’s standard deviation. Possible negative
results, i.e. (fitnessscaled <0) are set to zero.

3.5 Heuristic algorithms comparison
The performance of the proposed GA was compared to that
of three well-known heuristics: an iterated hill-climbing
(HC), an iterated stochastic hill-climbing (SHC), and
simulated annealing (SA). The methodology used to
implement these algorithms is as in references 21. The basic
characteristic of this implementation is the use of bit-vector
representation of the problem’s space solution which is then
mapped to a unique real solution of the physical problem.
Below, is given the pseudo-code for each one of the
algorithms ina Pascal-like format. For a detail discussion on
various versions of these algorithms, the interested reader is
referred to reference 21.

procedure iterated HC
begin

I←1;
while (I#MaxIterations) do

select randomly a current string Xc;
evaluate Xc;
b←1;
while (b#Nbits) do

generate a new string Xn by flipping
the b-th bit of string Xc;

evaluate Xn;
if f(Xc)<f(Xn) then Xc←Xn;
b←b+1;

endwhile
I←I+1;

endwhile
end

procedure iterated SHC
begin

select randomly a current string Xc;
evaluate Xc;
I←1;

Genetic heuristics 579

while (I#MaxIterations) do
b←1;
while (b#Nbits) do

generate a new string Xn by flipping
the b-th bit of string Xc;

evaluate Xn;
if random<e(f(Xn)2 f(Xc))/T then Xc←Xn;
b←b+1;

endwhile
I←I+1;

endwhile
end

procedure SA
begin

T←Tmax;
while (T$min) do

select randomly a current string Xc;
evaluate Xc;
b←1;
while (b#Nbits) do

generate a new string Xn by flipping
the b-th bit of string Xc;

evaluate Xn;
if f(Xc)<f(Xn) then Xc←Xn

Fig. 1. The robot’s environments. Four different aspects of the PPPG with (a) 13-vertices, (b) 23-vertices, (c) 33-vertices, and (d)
50-vertices graphs.

Genetic heuristics580

else if random<e(f(Xn)2 f(Xc))/T then Xc←Xn;
b←b+1;

endwhile
T←r.T;

endwhile
end

f is the evaluation or fitness function, random is a
function that returns a random number in the range [0, 1)
and Nbits is the total number of bits in the string, and
depends on the size of the PPPG. The HC procedure is a
simple version of a steepest ascent hillclimbing algorithm.
The algorithm runs for MaxIterations iterations. In each
iteration it randomly selects a current string solution (called
Xc) to the problem. Then, it generates Nbits neighbours
(called Xn’s); each new neighbour Xn competes with Xc,

and if it has a larger fitness value it becomes the new current
string.

Similarly, the SHC procedure runs MaxIterations itera-
tions. In each iteration a new neighbour string (from the
Nbits in total) is selected to replace the current solution with
a probability e(f(Xn)2 f(Xc))/T. In SHC there is not any “restart”
operation, i.e. after accepting a new solution Xn, the
algorithm continues searching the solution space from that
solution and does not return back to the beginning of
enumeration. The parameter T (T>0) in the iterated SHC
procedure was defined as equal to 10.

In the SA procedure, the starting temperature (Tmax)
was defined as equal to 10,000, the minimum temperature
Tmin was defined as equal to 0.1, and the factor r (0#r<1)
representing the temperature decay rate was defined as
equal to 0.9999. Each time the temperature T does not drop
below Tmin, the algorithm selectes randomly a new string
Xc to become the new current solution. The algorithm
terminates when the system becomes “frozen” (T<Tmin);
in this case, typically no more changes are accepted.

4. EXPERIMENTAL RESULTS AND DISCUSSION
The effectiveness of the proposed GA for the PPPG was
examined through multiple experiments carried out on four
different problems. These problems consisted of 13, 23, 33,
and 50 vertices graphs. The problems are shown in Figure 1.
For each one of these problems the GA was run to optimize
each time the tasks described in section 2. The performance
of the proposed GA was compared to that of the HC, SHC,
and SA heuristics described in sub-section 3.5. The loads
located at each vertex in the 13, 23, and 33-vertices graphs
are given in Table I.

The performance of each algorithm is measured (a) by the
number of evaluations performed until the convergence to
the optimum, or to a near-optimum solution, and (b) by the
fact of how good the generated best solution to the problem
was.

Table I. The weight of the loads at each vertex for the 13, 23, and 33-vertices
graphs, respectively.

13-VERTICES GRAPH

Vertex 1 2 3 4 5 6 7 8 9 10 11 12 13
Load 0 2 1 5 0 1 2 2 2 1 7 1 0

23-VERTICES GRAPH

Vertex 1 2 3 4 5 6 7 8 9 10 11 12 13
Load 0 4 1 0 0 1 1 4 5 1 6 10 1

Vertex 14 15 16 17 18 19 20 21 22 23
Load 1 1 1 1 10 8 7 1 1 0

33-VERTICES GRAPH

Vertex 1 2 3 4 5 6 7 8 9 10 11 12 13
Load 0 6 7 7 6 8 4 6 0 0 4 1 0

Vertex 14 15 16 17 18 19 20 21 22 23 24 25 26
Load 5 9 10 8 6 7 9 0 4 0 6 4 8

Vertex 27 28 29 30 31 32 33
Load 3 2 1 7 2 7 0

Table II. The case of a 13-vertices PPPG. (a) Evaluations
performed by each algorithm before converging to the global
optimum. (b) Best solutions evaluated for each one of the robot’s

tasks. Lmax=15.

13-VERTICES GRAPH

Algorithm Task-1 Task-2 Task-3 Task-4

HC 923 507 4,745 1,638
SHC 5,639 4,004 6,461 10,530
SA 122,148 517,738 1,000,970 799,591
GA 600 1,500 1,200 2,000

13-VERTICES GRAPH

Tasks Path cost Total load Generated path

1 65.681 9 1-3-4-9-12-13
2 267.76 22 1-2-3-4-6-7-9-10-11-12-13
3 109.49 16 1-3-4-9-10-11-13
4 97.32 14 1-3-4-10-11-13

Genetic heuristics 581

In the following discussion, the term evaluation means
the computation of the fitness or scoring function of a
specific chromosome. Thus, for the proposed GA we have
100 evaluations per generation, and in total 5,000 (for 50
generations) evaluations after its termination. For the case
of the iterated HC and the iterated SHC Nbits evaluations

are done in each new iteration. Therefore, the algorithms
can proceed up to MaxIterations ·Nbits evaluations. Max-
Iterations was defined to be equal to 50,000. For the case of
the SA technique, each time a new string Xc is randomly
selected and evaluated corresponds to an iteration. The
iterations proceed until the temperature T becomes less than

Fig. 2. The case of a 13-vertices PPPG. Evolution of the path cost and total load carried over the successive generations of the proposed
GA for each one of the four robot’s tasks. Lmax=15 (for robot’s task-4).

Genetic heuristics582

Tmin. Similarly, in each iteration we have Nbits evalua-
tions. Recall that the parameter Nbits corresponds to the
length of the chromosome (bit-vector) being used, which in
fact depends on the size of the specific PPPG. Therefore,
Nbits was defined equal to 13 for the 13-vertices PPPG,
equal to 23 for the 23-vertices PPPG, etc.

Starting from the 13-vertices graph, Table II summarizes
the experimental results of the four heuristics for this
problem. Specifically, Table II(a) displays the number of
evaluations performed by the algorithms for each different
task, before converging to the “global” optimum solution.
The generated best solutions for each one of the four tasks

Fig. 3. The case of a 23-vertices PPPG. Evolution of the path cost and total load carried over the successive generations of the proposed
GA for each one of the four robot’s taks. Lmax=20 (for robot’s task-4).

Genetic heuristics 583

are displayed in Table II(b). The upper limit Lmax for the
loads (case of task-4) was defined as equal to 15. Taking
into account the speed of convergence (number of evalua-
tions performed before converging to the optimum), we see
that the iterated HC and the proposed GA have the highest
performance, with the first being slightly better.

Figure 2 displays the cost of the generated best path with
the associated total load carried during the evolution of the
proposed GA for each one of the four tasks.

Figure 3 concerns the results generated by the proposed
GA for the second PPPG. Here the graph has 23-vertices.
We can see from the figure the path cost of the best solution
(maximum fitness) produced in each generation for each
one of the four robot’s tasks; accordingly, we can find the
corresponding total load carried by the robot for the best
solution in each generation of the GA. Note that only the
feasible solutions are displayed in the figure, a fact that
explains why the curves for each task do not start from the
initial generation. The best (maximum) fitness value over
the successive generations of the GA for the third and fourth
robot’s tasks, is shown in Figure 4. For the case of the task-
4, Lmax (i.e. the upper permitted limit for the loads), was
defined as equal to 20.

Table III summarizes the full comparative results for the
23-vertices PPPG obtained by the four heuristics for each

one of the robot’s tasks. The information shown in each
task-table include: the number of evaluations performed by
each algorithm until convergence to the near-optimum
solution, the path cost, the total load carried by the robot,
and the actual generated path corresponding to the best
solution. As we can see from these task-tables, the proposed
GA and the SA technique gave the best results, with the first
being slightly better and obviously faster.

Similarly, the complete comparative simulation results

Table III. Comparative simulation results on the 23-vertices PPPG for the four robot’s
tasks. Lmax=20.

(a)
23-VERTICES GRAPH (Task-1)

Algorithm Evaluations Path cost Total load Generated path

HC 151,317 123.331 5 1-9-23
SHC 221,812 232.740 23 1-4-8-10-11-12-13-14-23
SA 1,433,107 109.091 7 1-4-10-11-23
GA 4,500 109.091 7 1-4-10-11-23

23-VERTICES GRAPH (Task-2)

Algorithm Evaluations Path cost Total load Generated path

HC 58,305 392.949 27 1-3-4-6-7-9-10-11-12-13-15-23
SHC 60,812 392,949 27 1-3-4-6-7-9-10-11-12-13-15-23
SA 1,504,223 391.297 30 1-3-4-6-7-8-9-10-11-12-13-23
GA 2,200 444.459 32 1-3-4-6-7-8-9-10-11-12-13-14-15-23

(b)
23-VERTICES GRAPH (Task-3)

Algorithm Evaluations Path cost Total load Generated path

HC 96,738 232.782 25 1-3-6-7-8-10-11-12-13-23
SHC 110,055 352,912 30 1-3-6-7-8-9-10-11-12-14-23
SA 506,874 321.297 30 1-3-4-6-7-8-9-10-11-12-13-23
GA 3,800 321.297 30 1-3-4-6-7-8-9-10-11-12-13-23

23-VERTICES GRAPH (Task-4)

Algorithm Evaluations Path cost Total load Generated path

HC 88,251 231.994 12 1-4-7-8-9-10-14-23
SHC 87,446 231,994 12 1-4-7-8-9-10-14-23
SA 1,645,604 151.223 19 1-4-7-10-11-12-13-23
GA 4,200 151.223 19 1-4-7-10-11-12-13-23

Fig. 4. Transition of the best (maximum) fitness evaluated at each
generation of the GA for the tasks 3 and 4 on the 23-vertices
PPPG.

Genetic heuristics584

for the 33-vertices PPPG are shown in Table IV. The
characteristic of this table is the absence of the HC and SHC
techniques. The reason was the poor performance of these
two heuristics compared to that of the GA and SA
techniques. The hill-climbing based techniques fail to
generate comparative “good” solutions in most of the
experiments; a characteristic which is caused due to their
inherently local scope of search, and due to the large
problem’s search space.

Figure 5 shows the path cost and the total load carried by
the robot, respectively, over the successive GA’s generations
for the 33-vertices PPPG. These values correspond to the
best solution (maximum fitness) found in each generation of
the GA. Accordingly, Figure 6 illustrates the transition of
the best (maximum) fitness value evaluated at each
generation of the GA for the robot’s tasks 3 and 4. Recall
that, only the feasible solutions are displayed in the figures.
thus, for robot’s task-3, the first (generation’s best) feasible
solution was achieved at the 36th generation. This means
that during the first 35 generations, no feasible solution was
estimated. For the robot’s task-4, the first feasible solution
was produced rather more quickly, actually in the 31st
generation. Finally, for both tasks, the algorithm was
converged to the near-optimal solution at the 49th genera-
tion.

Taking into account the stochastic behaviour of the
proposed GA a more difficult class of PPPG was examined.
This class of problems concerns the path planning on a
graph with 50-vertices (see Figure 1(d)). To be more

accurate, we run the GA and the SA technique for 1,000
different experiments randomly selected on this graph for
the robot’s task 2, 3, and 4. In each one of the experiments
a load (an integer number in the range [0 . . . 7]) at each
vertex of the graph was randomly generated.

Figure 7 displays the generated (by the GA and the SA
technique) average load carried over every 20 experiments.
The experimental results concern the task-2 of the robot, i.e.
move safely from start to destination by picking and
carrying as many as possible weight of loads. Therefore, the
fitness function was estimated using equation (6). As we can
see from the figure, the performance of the proposed GA
(solid curve) is higher or at least the same as that of the SA.
Further, the GA’s speed of convergence is substantially
better than that of the SA technique.

Figure 8 shows the comparative results over the 1,000
experiments for the robot’s tasks-3. The fitness function was
evaluated using equation (7). Figure 8(a) plots the average
value of the best fitness functions estimated every 20
experiments. Accordingly, Figure 8(b) shows the associated
mean cost of the generated best paths (mean value over
every 20 experiments).

Finally, Figure 9 illustrates the comparative results for the
robot’s task-4. The upper permitted limit for the loads
(Lmax) was defined as equal to 40. Again, the values plotted
in Figures 9(a) to 9(c) correspond to the average values of
the best solutions over every 20 experiments. From these
figures the strength of the GA vs. the SA technique for the
specific PPPG is given.

Table IV. Comparative simulation results on the 33-vertices PPPG beween the proposed
GA and the SA technique. Lmax=35.

(a)
33-VERTICES GRAPH (Task-1)

Algorithm Evaluations Path cost Total load Generated path

SA 2,290,728 131.952 40 1-3-13-14-20-26-28-30-31-33
GA 4,100 90.608 22 1-18-19-28-30-33

33-VERTICES GRAPH (Task-2)

Algorithm Evaluations Path cost Total load General path

SA 2,384,976 425.055 77 1-6-7-9-10-13-14-15-19-20-21-22-
23-24-25-26-27-29-30-31-33

GA 4,900 368.254 86 1-3-4-6-7-8-10-11-13-14-15-19-20-
21-22-23-24-27-30-33

(b)
33-VERTICES GRAPH (Task-3)

Algorithm Evaluations Path cost Total load Generated path

SA 2,252,085 145.361 46 1-6-18-19-24-26-28-30-31-33
GA 4,900 141.209 54 1-3-6-18-19-24-26-27-30-31-33

33-VERTICES GRAPH (Task-4)

Algorithm Evaluations Path cost Total load General path

SA 2,345,112 111.714 34 1-18-19-20-28-29-30-31-33
GA 4,900 103.067 34 1-18-19-20-27-30-31-33

Genetic heuristics 585

5. CONCLUSIONS
A genetic algorithm (GA) was designed and used to solve a
path planning problem in a graph for a mobile robot which
during its motion performs a pick-and-carry loads opera-
tion. The proposed GA was used to optimize several

task-oriented criteria. Simulation results demonstrates the
effectiveness of the algorithm.

The performance of the proposed GA was compared to
that of an iterated hill-climbing, an iterated stochastic hill-
climbing, and a simulated annealing technique. The

Fig. 5. The case of a 33-vertices PPPG. Evolution of the path cost and total load carried over the successive generations of the proposed
GA for each one of the four robot’s tasks. Lmax=35 (for robot’s task-4).

Genetic heuristics586

algorithms’ performance was measured by the number of
evaluations performed until a near-optimum solution to the
problem has been reached, and by the fact of how good the
generated “best” solution to the problem was.

As the problem’s search space becomes larger and more
complex, the experimental comparisons show a much better
performance for the proposed GA and the simulated
annealing technique, than that of the hill-climbing based
techniques. Further, in all the experiments GA appears to
work better and substantially faster than a simulated
annealing technique.

References
1. J.E. Hopcroft and D.B. Krafft, “The challenge of robotics for

computer science”, In: Advances in Robotics, Vol. 1, Algo-

Fig. 6. Transition of the best (maximum) fitness evaluated at each
generation of the GA for the tasks 3 and 4 on the 33-vertices
PPPG.

Fig. 7. The case of a 50-vertices PPPG. Comparison between the
proposed GA and the SA over 1000 random experiments
concerning the robot’s task-2.

Fig. 8. Comparative results (on the 50-vertices PPPG) between
the GA and the SA technique for robot’s task-3. The average value
of (a) the best (maximum) fitness and (b) the path cost, estimated
every 20 experiments.

Fig. 9. GA vs. SA for robot’s task-4 (Lmax=40). Evaluations
over 1000 random experiments carried out on the 50-vertices
PPPG. The average value (estimated every 20 experiments) of: (a)
the cost of the generated path, (b) the total load carried, and (c) the
best fitness.

Genetic heuristics 587

rithmic and Geometric Aspects of Robotics (Schwartz J.T. and
Yap C.K., eds) (Eribaum, Hillsdale, New Jersey, 7–42,
1987).

2. J.T. Schwartz and M. Sharir, “A survey of motion planning
and related geometric algorithms”, Artificial Intelligence 37,
157–169 (1988).

3. T. Lozano Perez, “Spatial planning: a configuration space
approach”, IEEE Trans. on Computers C-32, No. 2, 108–120
(1983).

4. N.J. Nilsson, “A mobile automaton: an application of artificial
intelligence techniques”, Proc. of the 1st Int. Joint Conf. on
Artificial Intelligence, Washington D.C. (1969) pp. 509–520.

5. H. Mitchell, “An algorithmic approach to some problems in
terrain navigation”, Artificial Intelligence 37, 171–201
(1988).

6. C. O’Dunlaing and C.K. Yap, “A retraction method for
planning the motion of a disc”, Journal of Algorithms 6,
104–111 (1982).

7. C. O’Dunlaing, M. Sharir and C.K. Yap, “Retraction: a new
approach to motion planning”, Proc. of the 15th ACM Symp.
on the Theory of Computing, Boston (1983) pp. 207–220.

8. J-C. Latombe, Robot motion planning, Kluwer Academic
Publ., 1991.

9. E. W. Dijkstra, “A note on two problems in connection with
graphs”, Numerische Math. 1, 269–271 (1959).

10. P.E. Hart, N.J. Nilsson and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths”, IEEE Trans.
on Systems, Man, and Cybernetics SMC-4, No. 2, 100–107
(July, 1968).

11. Y. Davidor, Genetic Algorithms and Robotics: a heuristic
strategy for optimizaton (World Scientific publishing, Singa-

pore, 1991).
12. H-S. Lin, J. Xiao and Z. Michalewicz, “Evolutonary navigator

for a mobile robot”, Proc. of the IEEE Conf. on Robotics and
Automation, San Diego (May, 1994) pp. 2199–2204.

13. A.C. Nearchou and N.A. Aspragathos, “A genetic path
planning algorithm for redundant articulated robots”, Robot-
ica 15, Part 2, 213–224 (1997).

14. T. Shibata and T. Fukuda, “Intelligent motion planning by
genetic algorithm with fuzzy critic”, Proc. of the 8th IEEE Int.
Symp. on Intelligent Control, Chicago, Illinois (August, 1993)
pp. 565–569.

15. J.H. Holland, Adaptation in Natural and Artificial Systems
(University of Michigan Press, Ann Arbor, 1975).

16. D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning (Addison-Wesley, Reading, Mass.,
1989).

17. L. Davis, Genetic Algorithms and Simulated Annealing
(Morgan Kaufmann Publishers, Los Altos, CA, 1987).

18. J.J. Grefenstette, “Optimization of control parameters for
genetic algorithms”, IEEE Trans. on Systems, Man, and
Cybernetics SMC-16, No. 1, 122–128 (1986).

19. A. Brindle, “Genetic algorithms for function optimization”,
Doctoral dissertation (University of Alberta, Department of
Computer Science, Edmonton, 1981).

20. G. Syswerda, “Uniform crossover in genetic algorithms”, In:
(J. David Schaffer, ed.) Proc. of the Third Int. Conf. on
Genetic Algorithms, San Mateo, California 1989) pp. 2–9.

21. D.H. Ackley, “An empirical study of bit vector function
optimization”, Genetic Algorithms and Simulated Annealing
(ed. Davis L.), (Morgan Kaufmann, 1987), Chapter 13, pp.
170–216.

Genetic heuristics588

