OBSTACLE AVOIDANCE USING AN OCTREE IN THE CONFIGURATION SPACE OF A MANIPULATOR.

Bernard FAVERJON

INRIA

Domaine de Voluceau B.P. 105
78153 LE CHESNAY CEDEX, FRANCE

ABSTRACT

An automatic system for planning safe
trajectories for a computer controlled
manipulator among obstacles is a key component
of robot assembly operations.

This paper describes an algorithm transforming
cartesian obstacles into obstacles in the space
of the first three joints of a manipulator with
six revolute joints (e.g. a ACMA-CRIBIER V80),
and giving a hierarchical description of the
free space by mean of an octree.

Such a description is very useful in testing for
collision between the arm of the manipulator and
obstacles since it is represented by a point in
this space.

1 INTRODUCTION

We first describe different types of
algorithms that can be used in obstacle
avoidance problems and the wusefulness of the

representation of free gspace we propose for
solve these problems.
Section 2 describes the transformation

algorithm.

Section 3 describes some examples of algorithms
using this representation.
Obstacle avoidance algorithms

The simplest algorithm for planning
free paths amongst obstacles uses the generate
and test method. A simple path from start to

goal is hypothesized and is tested for potential

collisions. If a collision is detected, a new
path is proposed using information about this
collision. This is repeated until no collisions
are detected along the path.
In the case of a manipulator such an algorithm
can be described in three steps :
l-calculate the volume swept out by the
manipulator along the proposed path
2-determine the overlap between the swept

volume and the obstacles
3-propose a new path

CH2008-1/84/0000/0504$01.00©1984 IEEE

504

Such an algorithm presents several
difficulties and drawbacks.

First, calculating the volume swept
manipulator with revolute joints is hard. The
output we can expect is a description of this
volume with a set of many simple surfaces. A
similar description of the obstacles can be
provided, and we are faced with the problem of
determining the overlap of such volumes which is
known to be difficult and time expensive.
Another important problem lies in the
relationship between the second and the third
steps. The information we can expect from the
second step is only local (i.e. it concerns only
a part of the path and a part of the
manipulator). As the manipulator consists in
several parts linked together, it is difficult
to find good heuristics to modify the paths. But
even with good heuristics, the 1local character
of this method makes impossible great changes in
the path. So the proposed paths are generally
not short relative to some criteria we would
like to minimize (e.g. execution time of the
path by the manipulator).

cut by a

For these reasons, another type of
algorithm has been wused independently for
manipulator obstacle avoidance by Udupa (1) and
Lozano-Perez (2-3).

In this method, the goal is to simplify the
description of the moving object while
transforming the obstacles such that an overlap
between the new object and the new obstacles is

equivalent to an overlap between the original
ones. The first two steps of the algorithm
described above are then simplified.

Udupa's work concerned the Standford

arm. It used the fact that this manipulator is
composed of two linked objects, one of them (the
boom) being much larger than the other (the
forearm) .

The manipulator is decomposed in these two parts
which are then approximated by cylinders. An
abstraction space is constructed by computing
the forbidden regions for the boom tip in
spherical coordinates.

The volume swept out by the boom in this space
is represented by a curve and the abave
algorithm can be applied easily. When a

collision free path for the boom has been found,
a path for the forearm is searched along the
boom tip locus using heuristics based on the

-the body which can rotate about a vertical axis
(joint q1)

-the wupperarm attached to the body by an
horizontal axis intersecting the first one
(Joint q2)

~the forearm attached to the upperarm by an
horizontal axis (joint q3)

-the hand attached to the wrist by three

intersecting axis (joints g4,q95,q6)
we call arm of the manipulator the union of the
body,the upperarm and the forearm.

the ACMA-CRIBIER V80 manipulator.

Figure 1 :

We now define some notations wused in the
following.
We denote by E the three dimensionnal

cartesian space.

Q=Q1XQ2XQ3 is the set of values that joints
(gl,92,93)=q can take according to the
constructional constraints of the manipulator.
Qi, i=1,3 is an interval contained into

-pi,+pi .

Aldesignes the body, AZ the upperm,
forem and A=Al1UA2UA3 the arm.

A cartesian obstacle will be denoted by O
and its corresponding transformed obstacle by
T(0). T(0) is defined as the set of points q of
Q such that A(g) overlaps with O.

A3 the

2-2 simplifing the problem

The real volumes Al,A2,A3 are of
course complicated. Since we have seen that a
raugh approximation of the arm suffises in most
of the cases, we replace them by bounding
volumes made of a cylinder ended by hemispheres,

all of the same radius R. lLet Si, izl to 3 be,
the line segments such that A1 is the set of
points distant of less than R from S5i and
S5=51uS2uS3.

It can be seen easily that T(0) can be defined
as the set of points q of Q@ such that S(q)
overlaps the grown obstacle G(0). &(8) is

defined as the set of points of E distant of
less than R from G.)
Before we give an important lemma which is

basis of the practical algorithm, notice

the
that

506

Lemma :

Progf :

the representation of a cartesian position in
the joints space is not unigue. If (gl,q2,q3) is
a representation then (qgl+pi,pi-g2,-q3) is also
a representation of the same position. For this
reason, we only consider a part of T(0) in the
following and the other can be deduced from it
using the relation above.

If the cartesian obstacle 0 is convex,
the transformed obstacle T{(0)can be written :

T(0) = Uql4Il Uq2412(q1) gl X g2 X I3(gl,q2)
where Ii is an interval included in Qi.

notice first that segments 5i are
in a vertical plane defined by joint
can write T(0) = Uql4Il T(0gl) ,

contained
gl. So we

where Ogl is the overlap between 0 and such a
plane. Il is the set included in Q1 such that
T(0ql) is not empty, that is there exists g2 and

g3 such that 5(g) averlaps with G(Dql). Let Bl
be the common end of Sl and 52, and 12 and 13
the respective length of 52 and 53. If the

distance of Bl to G(Dgl) is greater than 12+13 ,
then T(0ql) is empty. We conclude that Il can be
defined as the set of angle ql such that the
sphere centered in Bl of radius R overlaps with
G(0ql). As this sphere and G(0) are convex, it
can be seen easily that I1 is also convex and so
is an interval.

We now examine the set T(Ogl). It is
clear that it can be written :

T(0gl) = ql X TP(0gl) where TP is the
transformation of a cartesian obstacle contained
into a plan containing axis z into the joints
space (qg2,q3).

llet B2 be the common end of S2 and S3. If the
distance of B2 to G(0gql) is greater than 13,

then the overlap between S3 and G(0gl) is

clearly empty and we can define 12 as the set of
angles g2 such that S2 overlaps with G{(0gl) or
this distance is less than 13. (figure 2). If 13
first

is greater than 12 the condition is

implied by the second.

Figure 2 : Definition of the set I2.

-the body which can rotate about a vertical axis
(joint ql)

-the upperarm attached to the body by an
horizontal axis intersecting the first one
(joint q2)

~the forearm attached to the wupperarm by an
horizontal axis (joint q3)

-the hand attached to the wrist by three

intersecting axis (joints g4,q5,q6)
we call arm of the manipulator the union of the
body,the upperarm and the forearm.

the ACMA-CRIBIER V80 manipulator.

Figure 1 :

We now define some notations used in the
following.
We denote by E the three dimensionnal

cartesian space.

Q=Q1XQ2XQ3 is the set of values that joints
(gl,q2,q3)=q can take according to the
constructional constraints of the manipulator.
Qi, 1i=1,3 is an interval contained into

-pil,+pi .

Aldesignes the body, AZ the upperm,
forem and A=A1UA2UA3 the arm.

A cartesian obstacle will be denoted by O
and its corresponding transformed obstacle by
T(0). T(0) is defined as the set of points q of
Q such that A(g) overlaps with O.

A3 the

2-2 simplifing the problem

The real volumes Al,A2,A3 are of
course complicated. Since we have seen that a
rough approximation of the arm suffises in most
of the cases, we replace them by bounding
volumes made of a cylinder ended by hemispheres,
all of the same radius R. Let Si, i=1 to 3 be,
the line segments such that Ai is the set of

points distant of 1less than R from Si and
S=51uS52uS3.

It can be seen easily that T(0) can be defined
as the set of points q of Q such that S(q)
overlaps the grown obstacle G(0). G(B) is

defined as the set of points
less than R from G.

Before we give an important lemma which is
basis of the practical algorithm, notice

of E distant of

the
that

506

the representation of a cartesian position in
the joints space is not unigque. If {(gl,q2,q3) is

a representation then (qgl+pi,pi~q2,-q3) is also
a representation of the same position. For this
reason, we only consider a part of T(0) in the

following and the other can be deduced from it
using the relation above.

Lemma ¢ If the cartesian obstacle 0 is convex,
the transformed obstacle T(0)can be written :

T(0) = Uql411 Uq2412(q1) gl X g2 X I3(qgl,q2)

where Ji is an interval included in Qi.

Proof : notice first that segments 5i are
contained in a vertical plane defined by joint
gl. So we can write T(0) = Uql4Il T(0ql)

where 0Ogl is the overlap between 0 and such a
plane. Il is the set included in Q1 such that
T(0ql) is not empty, that is there exists g2 and

g3 such that 5(g) overlaps with G(Dgl). Let Bl
be the common end of Sl and 52, and 12 and 13
the respective length of 52 and S53. If the

distance of Bl to G(0Ogl) is greater than 12+13 ,
then T(0ql) is empty. We conclude that Il can be
defined as the set of angle ql such that the
sphere centered in Bl of radius R overlaps with
G(0ql). As this sphere and G(0) are convex, it
can be seen easily that Il is also convex and so
is an interval.

We now examine the set T(0ql). It is
clear that it can be written :
T(0gl) = gl X TP(0gl) where TP is the
transformation of a cartesian obstacle contained

into a plan containing axis z into the joints
space (q2,q93).

‘et B2 be the common end of 52 and S53. If the
distance of B2 to G(0ql) is greater than 13,

then the overlap between 53 and G(Dgl) is

clearly empty and we can define I2 as the set of
angles g2 such that 52 overlaps with G{Dgl) or
this distance is less than 13. (figure 2). If 13
first

is greater than 12 the condition is

implied by the second.

Figure 2 : Definition of the set 12.

We now show that I2 defined with only
the second condition is convex. let 21 and q22
be two elements of I2. If they are both such
that 52 overlaps with G(0gl) which is convex, it
is easy to see that any q2 between g21 and q22
is in I2. Else they correspond to two positions
of B2, B2l and B22, and we suppose that for any
q2 betweem them 52 doesn't overlap with G{(Ogl).
(if not we cut the segment g21,922 in three
parts which fall in one of the two cases). There
exist two points M1 and M2 of G(0Ogl) such that
D(B21,M1) and D(B22,M2) are both less than 13

and it can be seen that in those conditions the
distance from B2 to the segment M1,M2
can only have a minimum when g2 describes the

segment 21,922 (figure 3). From the convexity
of G(0ql), we deduce that g2 is in I2, which is
then convex and an interval contained in Q2.

B21 M1

B1 M2

B22

Fiqure 3

If g2 is such that 52 overlaps with
G{0qgl}, it is clear that the whole interval Q3
must be forbidden and so 13(ql,q2) = Q3.
Else, the forbidden set for g3 is such that &3
overlaps G(0gl). Again, it is easy to see using
the convexity of G(Ogl) that I3 is convex and an
interval included in Q3 (figure 4). That proves
the lemma.

B2 83

Bl M

Figure 4 : Definition of the set I3.

507

2-3 The description of abstacles.

We can now choose a description of the
obstacles that simplifies the transformation.

First, we have to describe them as unions of
convex sets. Then, we have seen that the
transformation involves the determination of
intervals using the cartesian distance from a
point to the grown obstacle or the search of

tangent points between a segment and the grown
obstacle. (we define M as a tangent point if the
overlap between the segment and the grown
obstacle is equal to M and is not an extremity
of the segment). All these operations are quite
simple if the grown obstacle is a polyhedron or
a sphere and we will use such approximations of
the grown obstacles.

We can expect two different sources
for the description of the world. We can use
geometric models of the objects given by a CAD

system or the information given by a 3-D sensor.
In the last case, the information can be
condensed into a polyhedron and then a
hierarchical structure, the prism-tree described
by Faugeras and Ponce (4), by means of prisms.

The CAD system provides a similar description,
but uses several basic objects as
cuboids,cones,cylinders or spheres.

Such basic objects will be the input of the
growing algorithm that generates polyhedra and

spheres as output. A basic object is defined by
its type and parameters of size and position. A
polyhedron by a set of vertices and a set of

edges. For a given type of basic object the set
of edges describing the shape of the output
polyhedron is always the same, and only the
coordinates of the vertices depends on the

parameters of this object. Of course, the grown
obstacle of a sphere of radius r is a sphere of
radius r+R.

S0, the growing operation is quite simple and
fast.

|

i
Figure 5 : a scene described by the CAD system.

Figure 6 : a cuboid and the grown obstacle.

2-4 the transforming algorithm.

We describe here in details the case
of a polyhedron as grown obstacle. The case of a
sphere is easier and very similar.
We must keep in mind that our purpose is to

build an octree in the joint space of the arm.
An octree is a tree of degree eight which
describes hierarchically the space contained

into a cuboid that forms the root. The sons of a
node are the eight cuboids obtained in cutting
the father by planes parallel to the faces and
containing its center. The nodes can be labelled
as Full,Empty,or Mixed depending on whether they
are entirely in an obstacle, out of all
obstacles, or partly in an obstacle. Only the
Mixed nodes are divided until the mipimum size
for a cuboid is reached. A cuboid of minimum
size is called a voxel.
In our case, the root is the set @,
divide each coordinate into 64 parts. We obtain
a 3-D image of size 64X64X64 that we have to
fill using the transforming algorithm. We denote
dql,dg2,dg3 the increments on the various
angles.
The transforming algorithm uses the results of
the lemma and can be described as follows :
l-cut the polyhedron into slices by planes
containing the z axis and a vertex;
2-for all the slices do :
If the distance between Bl and the
less than 12+13 then
Cut the slice into sub-slices of thickness
dqgl;
compute TP(0gl);
Else next slice;
ends

and we

slice is

G(0ql) is a convex polygon. 12{(gl) can
be computed as the union of the same set for
each edge denoted I2n. For a given g2 in 12,
13(gl,q2) is the union of the same set dencte
I3n for the edges n such that g2 is in I2n.
Notice that the extremities of I3 (when it is
different from Q3) correspond to points on two
of these edges that remain on these edges wuntil
the set of edges n concerned with g2 changes.
The part of 12(gl) in which 52 overlaps G(0ql)
(that is I3 @ Q3) can be easily computed and is
denoted by I20{(ql).

508

So, the computation of TP(0ql) can be
described as follows :
l-determine a1l I2n and their union
I120(ql);
2-determin e the edges concerned with g2 =
min I2{ql) and the two particular edges;

12(g2) and

3—compute the points of contact on this two
edges and the corresponding points in (3, g3m
and q3M; I3 = q3m,q3M ;

4-fill all voxels corresponding to (ql,q2,q3)

with g3 in I3;

5-add dg2 to q2;
If g2 is in I20(ql) then I3 = Q3 go to step 4;
if the concerned edges are not changed, go to

step 3;
if the set of concerned edges is empty then
returns
else determine the two new particular edges
and go to step 3;
end;
2-5 Building the octree.
When the filling of the basic 3-D
image is finished, we have to build up the
octree. As we want to use the neighbor

information in the following we choose to number
the nodes as if the octree was full up. At each
level 1, the voxels are defined by three integer

coordinates nl,n2,n3 between 0 and 21—1. The
corresponding node in the octree will be denoted
(1,nl,n2,n3). His father is then given by
(1-1,n1/2,n2/2,n3/2) and his eight sons by
(1+1,n'1,n'2,n'3) with n'i = 2ni or 2ni+l.

With this representation, only two bits are
necessary for each cell. Their meaning is the
following :

11 = the node is entirely full.

1 0 @ the node is mixed.

0 1 = the node is empty and is a leaf (i.e.
iTs father is not empty)

0 0 = the cell is empty but is not in the

octree. (it is a descendant of an empty node.

value

Figure 7 : Ulabels of the nodes in the octree

the building algorithm is then 3
for 1 =5 to 0 do

for nl = 0 to 21-1 do
for n2 = 0 to 21—1 do

for n3 @ 0 to 21—1 do
If the 8 sons of node
are full, set it to 1 13
if the B sons of node
are empty, set it to 0 0;
else set it to 1 0 and its empty sons

(1,n1,n2,n3)

(1,n1,n2,n3)

to 0 13
ends;
end;
end;
end.
Of course, this algorithm is not
optimal as that described by Samet (5-6) for

quadtrees but finding the neighbors of a node in
the octree is much faster with our coding. (see
section 3-2).

3-AUGORITHMS USING THIS REPRESENTATION.

We describe here two algorithms
this representation of the manipulator
environment. The first one tests for overlap
between the arm and obstacles along a cartesian
path for the wrist. The second one searches for
a short path for the arm in the graph of the
neighbors of the octree relative to a
pre-specified criterion.

using

3-1 testing a cartesian path.

Such an algorithm can be used in the
first step of the find path problem when the
search is led by the configuration of obstacles
around the end effector.

The first step is to find an approximation of
the cartesian path made of successive line
segment motions in the joints space of the arm.
Then we test if each of these segments is
contained in the free space described by the
octree. Let gi and gf be the extremities of such
a segment. Starting with the root of the octree,
we first follow a branch until we find a full or
an empty node containing qi or gf. Let Ni and Nf
be these nodes. If one of them is full we return
False. If Ni is equal to Nf we return True.
Else, we compute the intersections gi' and gf’'
between the segment and the surface of nodes Ni

and Nf and we call recursively for the test of
segment (gi',af'). In order to insure the new
points won't be in the same cells as the old

ones, these are grown by a small distance.
This algorithm is very efficient to test
collision between the whole arm of
manipulator and obstacles.

for
" the

509

3-2 searching a short path for the arm.

Such an algorithm can be used in
second step of a finding free path problem
looking for large motion of the arm
minimizes a pre-specified criteria. It uses the
graph of neigbors of the octree and is derived
from the well known A¥ algorithm. This algorithm
allows the wuse of heuristic information.
Initially, the start node is placed on a list of
candidate nodes for examination (the OPEN list).
At each step of the algorithm ,the node with
minimum total path cost estimate (i.e. actual
cost of reaching the node from the start plus an
estimate of the cost to travel from the node to
the goal node) is moved onto a CLOGSE list and
its neigbors are placed on the OPEN 1list. The
search ends when the goal node is moved onto the
CLOSE list. The algorithm finds an optimal path
when the estimate cost is a lower bound of the
true cost.

We first consider the neighbor-finding
algorithm.
tet (1,nl,n2,n3) be a node

the
when
that

of the octree. We

want to find all its empty neighbors in the
octree. The neighbors of a node are the nodes
that share a face with it. At 1level 1, there

exist six cells neighboring this node, but they
may not be in the octree. Consider one of these
cells. If it is full there cannot be neighbors
in this direction. If it is empty and a leaf
(type 01), it is the only neighbor in this
direction. If it is empty and not a 1leaf (type
D), one of its ancestors is the only neighbor
in this direction. Finaly, if it is mixed, we
call recursively for the neighbors of its four
sons sharing the concerned face in this
direction.

We now examine different
criteria.
The criterion we want to minimize is the
execution time of the path by the manipulator.
As we work in the joints space of the arm the
path will be defined by a succession of line
segments in this space. The time for such a path
includes two terms : one for the motion at
constant speed and one for the changes of speed.
For a segment, the first one is proportional to
the maximum angle of rotation on the different
axis and the second one to the maximum change of
rotation speed on the different axis. This
second term is difficult to compute because we
don't only need the current node but also the
previous one. If we only take into account the
first term, the results are not very good,
because the criterion is constant on cuboids and
the choice between the nodes in the same faces
of such surfaces is quite arbitrary. In order to
take into account the changes in the direction
of speed, it is in fact better to choose the
cartesian distance wich gives results similar to
the complete criterion but is much easier to
compute.
Another problem is the choice of end points
segments. The simplest is to choose the

choices of

for
centers

of the cells, but one can see that large cells
are then disadvantaged. A better solution is to
choose the point of the cell that minimize the
cartesian distance to the actual point and the
goal, but of course it is much longer. Another
solution is to correct the simple criterion by
adding a cost depending on the size of the cell.
When an optimal list of cells has been found,
intermediate points are searched in their union
such that the total distance is minimized. These
points are vertices or on edges of the cells.

have searched for an
optimal path for the arm only. The following
step is to find a correct orientation for the
hand along the path for the wrist. This is of
course easier if the wrist is not too close to
the obstacles. So, we had better to search for a
path far from obstacles than a shorter one close
to obstacles for the arm. In order to do that we
can increase the additionnal cost on the size of
the cells. Figures 8 and 9 shows two
trajectories with the same start and goal
positions. The first one has been found with a
low cost one size of cells and the second with
a heavy cost.

Until now we

Speeding up the search.

One easy way to speed the search is to
use a heuristic. In the case we use the
cartesian distance in joints space as criteria,
a lower bound of the cost of the remaining path
from the current node to the goal is of course
the cartesian distance between these two points
and we will use this heuristic.

But even with a heuristic, the search may remain
long. To reduce the time we can now use the
hierarchy of the octree. Instead of giving a
heavy cost to small cells, the idea is simply
not to consider them in the search. Let 1S5 and
16 be the level of cells containing the start
and goal points and 1 the maximum level at which
we want to search for a path. The real Ilevel
used in the search is max(1,15,1G) and is
incremented by 1 if no path can be found. The
time of the search is about ten times smaller
for 1 = 4 than for 1 = 6.

The problem in this method is that the level is
limited by 1S and 1G. A solution is to use a
modified version of the A*¥ algorithm in which
the search is done from both the start and goal
nodes at the same time. In this case, we use an
OPEN and a CLOSE list for both sides. When a
node is in both CLOSE lists the search ends and
the optimal path is the wunion of the optimal
paths reaching the start (resp. the goal) node
to this node. We can then start the search at
level 1S (resp. 1G) at start (resp. goal) side.
As soon as a node of smaller level is moved to
the CLOSE list we can limit the search to this
level, if it is greater than 1 and to 1
otherwise. If no path can be found 1 is
incremented by 1 and the search done again.

510

CONCHUSION.

By transforming the cartesian
obstacles into a hierarchical structure in the

Jjoints space of the arm of a manipulator with
revolute joints we are able to test and search
for paths in a cluttered environment very

quickly. This method is useful when many motions
have to be done in the same environment. The
construction of the representation of free space
is done in less than 15 seconds on a
mini-computer Perkin-Elmer 3244 for the
environment of figures 8 and 9. (the computation
of a transformed obstacle is about proportional
to the solid angle of the cartesian obstacle
seen from point Bl). Collision-free paths are
found in about 5 seconds using the whole octree
and less than a second when limiting the level
of search.

REFERENCES.

(1) Shriram M. UDUPA
"collision detection and avoidance in
computer controlled manipulators."

proceedings of I3JCAI-5 MIT
Cambridge,Ma.,Aug 77

(2) Thomas U0ZAND-PEREZ
"an algorithm for planning
collisian-free paths amongst

polyhedral obstacles.”
IBM Research report. RC 7171 June 78
(3) Thomas LOZANO-PEREZ
"automatic planning of
transfer movements"
IEEE Trans. On Systems,Man and
Cybernetics (681-698) SMC-11
(4) Olivier D. FAUGERAS and Jean PONCE
"prism-trees : a hierachical
representation of 3-D objects"
IJCAI-83, Karlsruhe,Germany Aug. 83

manipulator

(5) Hanan SAMET
"Region representation : quadtrees
from binary arrays'
Computer graphics and IP 13 (88-93)
1980

(6) Hanan SAMET
"Neighbor finding techniques for
images represented by Quadtrees.”

Computer graphics and IP 18 (37-57)

1982

=m!

O

-

Figure 8 : A path with a Tow cost on small cells.

Figure 9 : A path with a heavy cost on small cells.

512

